
info@apriorit.com
www.apriorit.com

Keeping an eye on USB connections is an important part of many cybersecurity practices. This is why
our client decided to enhance their enterprise product by adding functionality for blocking restricted
USB devices.

To achieve this goal, the client searched for a professional team with experience in custom driver
development. After researching the market, they decided to go with Apriorit.

Explore this case study to find out how we helped our client deliver a driver for managing ports and
what challenges we faced along the way.

Case study

Developing a Custom Driver Solution for
Blocking USB Devices

The client
Our client is a leading US-based provider of advanced encryption solutions for protecting sensitive
data and intellectual property. They offer a complete suite of encrypted hardware products, virtual
drives, and centralized management platforms.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

Our approach
During the discovery stage, we assessed the client’s initial requirements and discussed the scope of work,
iterations, and time frames for each iteration. Apriorit’s dedicated team for building a solution for USB
port blocking included a developer, quality assurance engineer, business analyst, and project manager.

Since the scope of work was clear and only a few questions arose during development, we chose weekly
reports over regular calls as a communication strategy. This was enough for our client to stay abreast of

info@apriorit.com www.apriorit.com

The challenge
The client requested a driver for managing USB ports on computers and blocking USB devices
according to a set of rules.

The client challenged us to develop a driver for blocking USB devices that would:

• Block a wide range of USB devices based on sets of rules

• Support different versions of Windows and macOS

• Keep a computer’s basic functionality working in case of an incorrect combination of rules —
for example, after blocking some internal USB or USB-like connections — until the support team
changes the rules

• Be compatible with the client’s other solutions, as it was supposed to be one component of the
client’s enterprise software product.

4 main challenges

Block USB devices according to a set

of rules

Provide driver support for Windows and

macOS

Keep the computer working if rules

contradict each other

Ensure driver compatibility with the

client^s other solutions

The main challenge was to deliver a driver that at the same time must be secure, prevent unauthorized
use of USB devices, and guarantee the work of the end point with any combination of rules. The client
requested a driver for managing USB ports on computers and blocking USB devices according to a set
of rules.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

The result
The Apriorit team successfully delivered an efficient driver for blocking USB devices. To make it meet all
of the client’s requirements, we made necessary adjustments and thoroughly tested each feature before
its release.

To ensure the driver’s work on Windows, we used our existing raw solution and modified it. For macOS,
our team developed a solution from scratch.

How we did it
To build a solution to block USB ports and help our client deliver the desired product, we thoroughly
planned our work and divided the entire process into four main stages.

Key project stages

Adjusting our raw

driver solution for

Windows

 Developing the

macOS driver

Adding new features

to the Windows

driver

Creating a custom

application for Macs

with M1 processors

Stage 1. Adjusting our raw driver solution for Windows

At Apriorit, we already had a raw solution — a USB blocking SDK — that we developed earlier and that
needed to be adjusted for the client’s needs. The raw driver was written in C++ for Linux, so we had to
port it to Windows.

Initially, our solution was managed via blocklists and allowlists:

current tasks and upcoming issues.

When we moved to adjusting the developed driver and adding new features, our team started working
with the client’s Jira. This ensured swift work with arising issues and feature requests and allowed our
client to communicate with the team directly in the comments on Jira tickets instead of relying on
emails.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

• The blocklist contains devices that must be blocked. Users can instantly block all printers,
mass storage devices, etc. instead of blocking such devices one by one. All devices that are not
added to the blocklist are allowed.

• The allowlist consists of two parts. The user-defined allowlist permits users, for example, to
block access to all printers except a specific one. The internal allowlist includes devices that must be
allowed to guarantee the computer’s functioning.

Both lists are stored in the registry. An important note is that if rules are changed, they only apply
to newly connected devices. After we demonstrated to our client how our raw solution worked on a
demo application, we agreed to introduce the following modifications:

• Change the blocklist and allowlist update and storage mechanisms to match the requirements
of the client’s larger system

• Change list formats to meet the client’s rule requirements

• Add a driver installer

• Sign the driver with the client’s digital signature

• Add tray notifications to let end users know that a device has been blocked

Once we introduced all the changes, we also prepared documentation and tested the final driver before
sending it to the client. After the successful product release, we moved to support activities.

Stage 2. Adding new features to the Windows driver

Our first task during this stage was to add support for Windows 10 to our driver. Then, the client
requested several new changes, in response to which we did the following:

• Enhanced the driver’s compatibility with the client’s system by adding a TypeScript wrapper
and a native Node.js module

• Improved our driver’s flexibility by adding the ability for read-only access to devices apart from
blocking and not blocking

• Made device management more user-friendly for administrators by introducing changes to the
driver that made it possible to get more information about detected USB devices

• Enhanced driver functionality and provided better protection of end-user data by adding
support for UASP storage devices and VDI environments: Hyper-V, VMware, and Citrix XenApp

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

• Thoroughly tested all changes before presenting them to the client and releasing the driver

After the successful Windows driver release, our team moved to implementing USB device blocking
functionality for macOS.

Stage 3. Developing the macOS driver

During our research, we found that existing third-party solutions could not fully meet all of the client’s
requirements, so we started developing a custom driver for managing USB ports for macOS.

To implement the required functionality, we decided to write a kernel extension (kext) in C++. Our
proposed driver solution works as follows:

1. When a user plugs in a device, the kernel looks for dexts (DriverKit extensions) and kexts to match
the device.

2. Found drivers are loaded following the probe score set for them by developers.

3. Our kext is attached after the system kexts. Once attached, our kext checks if the plugged-in
device must be blocked according to the defined rules.

4. If the device must be blocked, the kext detaches those matched USB drivers that were attached
before.

5. After this, the device becomes invisible to the system, as there are no longer USB drivers to
support its work. Thus, the device is effectively blocked.

Moreover, even if a user tries to attach blocked drivers manually to make the device available, our kext
will detect it and continue detaching them.

If rules suggest that a certain device must be read-only instead of being blocked entirely, our kext will
act slightly differently. In this case, it mounts the device in read-only mode, which doesn’t affect driver
visibility to the system and allows users to still work with the device. But having a high probe score,
our kext prevents any other extension from changing the read-only setting for a device, preventing
data from being copied to it.

Once we developed the driver, we prepared a demonstration application written in Swift that allowed
both our QAs and our client’s QAs to check the driver behavior with different sets of rules and devices.

According to the client’s requirements, we ensured that the driver works on macOS versions up to
10.11.x. After its successful release, we started adding support for newer versions of macOS.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com
https://www.apriorit.com/dev-blog/430-macos-kext-development

Stage 4. Creating a custom application for Macs with M1 processors

In 2020, Apple released the M1 processor, which has limited possibilities for kexts. Since the existing
driver could no longer be used for computers with M1 processors, we had to create a new kextless
application.

After some research, we developed a new custom solution that was a macOS system daemon
wrapped in the bundle structure and signed with endpoint security entitlement with the following
key characteristics:

• The application receives device blocking rules from a locally stored JSON file.

• The application can establish a connection with the client application via XPC to send/receive
blocking commands and event logs.

We managed to deliver an application that completely operates in user mode and at the same time
provides all the functionality of the kext-based solution.

Once the kextless solution was successfully released, our team moved to implementing new features.
We added support for a wider range of USB devices and made general driver behavior more user-
friendly, such as by adding pop-up notifications explaining to the end user why a USB device has been
blocked.

We keep checking each macOS update to make sure our application continues to work correctly.

info@apriorit.com www.apriorit.com

3 key project challenges

Developing a kextless

application

Supporting various USB

devices

Avoiding blocking

essential system

functionality

Challenges and solutions
During the custom USB device blocking solution development and adjustment processes, our team
faced a few challenges. The most crucial were the following:

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_endpoint-security_client
mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

1. Developing a kextless application

This was the biggest technical challenge faced by our team during this project. We conducted in-
depth research looking for possible third-party solutions and didn’t find anything that could be used.
Then, our team moved to preparing a proof of concept (PoC) and looking for the possibility to block
the device or make it read-only from user mode. The proposed solution worked flawlessly and allowed
the client to achieve their goal, even on Macs with M1 processors.

2. Supporting various USB devices

There are a great variety of USB devices out there, and we wanted to be sure that our solution would
work smoothly with most of them. To do that, we:

• Tested the most important groups of devices, such as storage devices, smartphones, audio
devices, and video devices

• Asked Apriorit employees to share unique USB devices like USB shredders, USB fans, and USB
kettles, and checked them as well

This allowed us to make sure our driver can detect and block even the most exotic devices of lesser-
known vendors.

3. Avoiding blocking essential system functionality

When developing device blocking solutions, there’s always a risk that they could block some of the
computer’s essential functionality and make the device unusable. To avoid that, we implemented
default allowlists that allow some devices to never be blocked irrespective of the administrator’s
settings. This guarantees that even if someone messes with settings or sets them carelessly, the
support team will always be able to fix such an issue and make the endpoint work correctly.

The impact
The developed solution helped our client launch their software product with the ability to block ports
for USB devices and allow only client-approved devices. Thus, the driver created by the Apriorit team
increased both the value of the client’s product and the client’s competitive advantage.

We continue supporting the client’s USB blocking solution, adjusting it to the ever-changing world
and adding new features at the client’s request.

Ready to develop a custom driver solution?
Contact Apriorit to leverage our development skills and expertise!

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

